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ABSTRACT

A key aim of observational campaigns is to sample atmosphere–ocean phenomena to improve under-

standing of these phenomena, and in turn, numerical weather prediction. In early 2018 and 2019, the

Atmospheric River Reconnaissance (AR Recon) campaign released dropsondes and radiosondes into

atmospheric rivers (ARs) over the northeast Pacific Ocean to collect unique observations of temperature,

winds, and moisture in ARs. These narrow regions of water vapor transport in the atmosphere—like

rivers in the sky—can be associated with extreme precipitation and flooding events in the midlatitudes.

This study uses the dropsonde observations collected during the AR Recon campaign and the European

Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS) to

evaluate forecasts of ARs. Results show that ECMWF IFS forecasts 1) were colder than observations by

up to 0.6 K throughout the troposphere; 2) have a dry bias in the lower troposphere, which along with

weaker winds below 950 hPa, resulted in weaker horizontal water vapor fluxes in the 950–1000-hPa layer;

and 3) exhibit an underdispersiveness in the water vapor flux that largely arises from model represen-

tativeness errors associated with dropsondes. Four U.S. West Coast radiosonde sites confirm the IFS cold

bias throughout winter. These issues are likely to affect themodel’s hydrological cycle and hence precipitation

forecasts.

1. Introduction

Observational campaigns use a range of airborne and

surface-based instruments to probe atmosphere–ocean

phenomena to improve understanding of these phe-

nomena, and in turn, numerical weather prediction

(NWP) models. A campaign, for example, can have a

research aircraft to deploy dropsondes to measure at-

mospheric properties (Ralph et al. 2017), extra radio-

sondes to better sample weather systems or climate zones

(Schäfler et al. 2018; or a research vessel for ocean

measurements (Ralph et al. 2016). The observations

taken may then be assimilated into NWP models to first

provide a more accurate estimate of the initial state, and

second, to compare with the NWP short-range fore-

casts prior to their assimilation to identify model er-

rors and behavior. In recent years, there has been a

range of missions, for example, covering tropical regions

(e.g., Doyle et al. 2017), extratropical regions (Geerts

et al. 2017; Ralph et al. 2016; Schäfler et al. 2018), polar
regions (e.g., Uttal et al. 2002), and cloud processes

(Flamant et al. 2018).

In January and February 2018, there was an observa-

tional campaign calledAtmospheric River Reconnaissance

(ARRecon) inwhich research aircraft releaseddropsondes

into atmospheric rivers (ARs; Ralph et al. 2018) and other

dynamically active regions across the eastern North Pacific
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Ocean, along with radiosondes from sites in California.

ARs are important because they are responsible for much

of the water vapor flux across the midlatitudes (Ralph

et al. 2005, 2017) and as they can be associated with

extreme precipitation, flooding, and adverse socio-

economic effects especially in coastal mountainous

regions (Ralph et al. 2006; Lavers et al. 2011; Neiman

et al. 2011; Ramos et al. 2015). It was the aim of AR

Recon in 2018 to provide research measurements and

added information to better inform decision-makers

and forecasters on AR impacts. In particular, the

campaign afforded the opportunity to do diagnostic

studies on the capability of NWP systems to model

ARs (e.g., Lavers et al. 2018; Stone et al. 2020). Lavers

et al. (2018) found that the largest uncertainties in the

magnitude of the AR water vapor flux in the ensemble

forecasts from the European Centre for Medium-Range

Weather Forecasts (ECMWF) Integrated Forecasting

System (IFS) originated from the 850-hPa winds, a stan-

dard pressure level typically above the planetary bound-

ary layer (PBL). The specific humidity was also erroneous

in theECMWFIFS forecasts examined, butwas subject to

less uncertainty. These uncertainties in the water vapor

flux can affect the forecasts for high-impact extreme pre-

cipitation events driven by ARs and also the location and

magnitude of the latent heat release, which has implica-

tions for the atmospheric dynamics and predictability

(e.g., Berman andTorn 2019). Strong diabatic forcing over

the central United States has also been identified as a

common precursor six days prior to large forecast busts

over Europe (Rodwell et al. 2013).

The AR Recon campaign conducted six intensive

observation periods (IOPs) in February andMarch 2019

in which dropsondes and radiosondes were launched

across the northeast Pacific Ocean and California, re-

spectively. These unique dropsonde profiles increase the

available data sample on ARs and together with those

obtained in 2018 provide an opportunity to further the

findings of Lavers et al. (2018). Specifically, one limita-

tion of the previous research was the predominant use of

three standard pressure levels (925, 850, and 700hPa) to

calculate the water vapor flux; this was because these are

the only levels archived in the ECMWF ensemble system

and a consistent assessment was required between the

observations and medium-range forecasts. This study

builds upon the previous results by considering all

available dropsonde pressure levels that were assim-

ilated into the ECMWF IFS, thus allowing for a more

complete analysis that includes data at a much higher

vertical resolution than considered by Lavers et al.

(2018). In so doing, the following questions are ad-

dressed. First, what model errors exist in the spe-

cific humidity, temperature, and winds during these AR

events? Second, in which layers do the largest water vapor

flux and its errors occur? And third, using the 925-, 850-,

and 700-hPa surfaces, what is the spread–error relation-

ship of lower-tropospheric water vapor flux in ECMWF

IFS forecasts?

2. Data and methods

a. IOPs and U.S. West Coast land-based
radiosonde sites

There were six IOPs in AR Recon 2019: 2 February,

11 February, 13 February, 24 February, 26 February, and

1March 2019 (all centered at 0000UTC). Figure 1 shows

the magnitude of the vertically integrated horizontal

water vapor flux (integrated vapor transport, IVT),

mean sea level pressure, and dropsonde locations during

the IOPs. The dropsondes were deployed by research

aircraft (average flight time of 8h) mostly in regions of

intense water vapor flux. These observations were trans-

ferred to the World Meteorological Organization Global

Telecommunications System (GTS) and ingested into

operational NWP systems including the ECMWF IFS.

During the six IOPs, 259 dropsondes were released, and

together with the 326 dropsondes released in the five IOPs

in AR Recon 2018 [Fig. 1 in Lavers et al. (2018)], there

were 585 dropsondes available, with 571 that include the

925-, 850-, and 700-hPa surfaces. In the IOPs in 2018,

Vaisala RD94 dropsondes were used and their accuracy

for pressure, temperature, and relative humidity is 0.4 hPa,

0.2K, and 2%, respectively (Vaisala 2010). In the 2019

IOPs, the Vaisala RD41 dropsondes were used, with

higher accuracy for temperature of 0.1K (Vaisala 2018).

Jensen et al. (2016) indicate the high performance of the

humidity sensors, and the wind observations were re-

ported to the nearest 1ms21 (due to the alphanumeric

data reports).

To assess the representativeness of the dropsondes, the

0000 UTC ascents at four U.S. West Coast land-based

radiosonde sites were assessed during winter [December–

January–February (DJF)] 2017/18 and 2018/19 and sum-

mer [June–July–August (JJA)] 2018 and 2019. The sites

used were at Salem,Oregon (ID: 72694; 44.98N, 123.08W);

Medford, Oregon (ID: 72597; 42.48N, 122.98W); Oakland,

California (ID: 72493; 37.78N, 122.28W); and San Diego,

California (ID: 72293; 32.88N, 117.18W). These four ra-

diosonde sites are shown as magenta dots in Fig. 1.

b. ECMWF ensemble of data assimilations and
forecasts

To characterize the initial atmospheric flow uncer-

tainty in the ECMWF IFS, an ensemble of data assimi-

lations (EDA; Isaksen et al. 2010) is employed. During

this period, the EDA consisted of one control member
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and 25 perturbed members in which the first-guess

(background; 3–15-h lead time) forecasts and observa-

tions (including the dropsonde data) were combined

(using four-dimensional variational data assimilation) to

produce 26 new analyses. In this framework, the vari-

ance of the first-guess forecasts indicates the initial flow

uncertainty and the observation errors are derived from

the different observation perturbations estimated and

applied in each of the 25 perturbed EDAmembers. The

analyses attempt to describe the remaining atmospheric

uncertainty after assimilation. Following the data as-

similation procedure, the 50 ensemble forecast members

FIG. 1. The six intensive observation periods (IOPs) in AR Recon 2019. (a)–(f) The ECMWF analysis of mean

sea level pressure (contours; hPa) and the magnitude of the vertically integrated vapor transport (IVT) (shaded;

kg m21 s21). Dropsonde locations are given by black dots, and the magenta dots in each panel refer to the

radiosonde locations. The names of the radiosonde locations are given in (f).
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(ENS) that run out to 15 days are produced by a

symmetric combination of 6-h forecasts from the EDA

analyses, the latest single high-resolution forecast, and

singular vectors (Lang et al. 2015). Stochastic pertur-

bations (Leutbecher et al. 2017) are applied within the

background forecasts and ENS. The EDA in the

0000 UTC window and ENS data from 0000 UTC were

interpolated to the release point of the dropsonde

observations.

c. Forecast evaluation and water vapor flux
calculation

In data assimilation, it is common practice to assess

the model fit to observations using observation-minus-

background differences (O2 B; Desroziers et al. 2005),

referred to in this study as departures. Herein, using all

dropsonde locations, we calculate O 2 B in the EDA

control member for specific humidity, temperature,

and wind speed on all assimilated pressure levels from

1000 to 200 hPa and average these departures in 50-hPa

layers. This approach allows for the identification of

potential model biases in different layers. Note that

each dropsonde report received over the GTS for use

in this study typically contained 15–40 levels and thus

they have fewer pressure levels than those measured

by the dropsondes on their descent to the ocean sur-

face. These pressure levels consist of both standard

and significant levels (most of them being significant)

and the average O 2 B departures were evaluated from

these levels.

The horizontal pressure-level water vapor flux mag-

nitudes were determined as the product of specific hu-

midity and the horizontal wind speeds and then evaluated

in 50-hPa layers. These fluxes were assessed by linearly

interpolating specific humidity onto wind levels; similar

fluxes were found when interpolating the winds on to

specific humidity levels. This approach, without consid-

ering the vertical integral of the water vapor flux, guards

against higher weighting being given to any particular

pressure level.

A reliable ensemble forecasting system should have

the property where over many forecasts the mean en-

semble variance and error of the ensemble mean are the

same (Leutbecher and Palmer 2008). For example, the

ensemble variance (EnsVar) can be compared with

the variance of the error of the ensemble mean (Error2);

the standard deviation of these quantities can also be

compared. Rather than discussing errors, however, we

discuss the departures of forecasts from observations

because each has associated errors and biases. Following

Rodwell et al. (2016), we estimate observation uncer-

tainty (ObsUnc2) consistent with the EDA’s obser-

vation perturbations and calculate the squared bias

between the forecast and observation (Bias2). Writing

Depar2 for the mean squared departure and DepVar for

the variance of the departures (once the bias has been

removed), we obtain the following:

Depar2 5EnsVar1ObsUnc2 1Bias2 , (1)

DepVar5EnsVar1ObsUnc2 . (2)

This modified spread–error relationship is investigated

in water vapor fluxes on the 925-, 850-, and 700-hPa

pressure surfaces at 24-h intervals out to 120h (day 5).

3. Results and discussion

a. Forecast evaluation with dropsonde observations

To illustrate the AR Recon dropsonde data used to

calculate theO2B departures, Fig. 2 shows scatterplots

of observations versus background (EDA control) fore-

casts for specific humidity, temperature, wind speed, and

water vapor fluxes in the 950–1000-hPa layer. First, as

expected given the short forecast range, all variables

have a strong linear correlation ranging from 0.86 for

water vapor flux (Fig. 2d) to 0.97 for temperature (Fig. 2b).

Second, for this particular layer, the mean O 2 B shows

that the observed temperature is 0.23K warmer (Fig. 2b)

and the specific humidity is 0.15gkg21 moister (Fig. 2a)

than the model, as highlighted by the location of many of

the points below the 1:1 lines in Figs. 2a and 2b. Third, the

cloud of points for wind speed (Fig. 2c) and water vapor

flux (Fig. 2d) have a similar shape implying that the model

has a tendency to underestimate low-level wind speeds

(.20ms21) and subsequently underestimate low-level

water vapor fluxes. This likely causes the positive O 2 B

values of 0.41ms21 and 6.06gkg21ms21 for the wind

speed and vapor fluxes, respectively (Figs. 2c,d).

The average O 2 B departures (in the EDA control

member) in 50-hPa layers for the specific humidity,

temperature, wind speed, and water vapor fluxes are

shown in Fig. 3. Figure 3a reveals that the model is drier

than observations by;0.1–0.2 g kg 21 below 850hPa and

moister than observations by ;0.1 g kg 21 between 600

and 850 hPa. The dry departure below 850hPa would

reduce the lower-tropospheric water vapor flux in the

model and potentially affect IFS precipitation. The

model moist bias at midlevels has less impact on

the water vapor fluxes as it is above the low-level jet

core; this is confirmed by assessment of the observed and

background fluxes in Fig. 3d. For the temperature in

Fig. 3b, the model mostly has a cold bias throughout the

troposphere when compared with the dropsonde pro-

files, with the largest departure of about 0.6K found

from 900 to 950 hPa. Over the ocean this layer includes,
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on average, the PBL top, which is calculated here using

the bulk Richardson number (e.g., Lavers et al. 2019).

Figure 4 shows scatterplots of the observations versus

background for the height and temperature at the PBL

top. There is generally good agreement found in the

scatterplots and the linear correlation has values of 0.79

and 0.96 for the height and temperature of the PBL

top, respectively; the average observed PBL height is

734.4m (928.0 hPa) and the background PBL height is

743.6m (926.4 hPa). These findings for the PBL height

are in line with those for the midlatitudes in Lavers

et al. (2019) and the mean O 2 B for temperature at

the PBL top of 0.44K corroborates the O 2 B for

temperature in Fig. 3b. Furthermore, the temperature

departures of all layers in Fig. 3b have mean values

that are significantly different from zero at the 90%

level, as shown by the black error bars that do not cross

zero, suggesting that the signal of a cold temperature

bias in the model is robust. These model cold biases

are similar to previous findings of an approximate

0.5K bias in the tropics (208S–208N) and somewhat

smaller biases in the northern midlatitudes at low

levels (Ingleby 2017).

For wind speed, there is evidence that the observa-

tions are stronger than the background in the 950–

1000-hPa layer and in the upper troposphere (Fig. 3c),

FIG. 2. Scatterplots of the observations vs the background (EDA control) forecasts at the dropsonde locations for

(a) specific humidity, (b) temperature, (c) wind speed, and (d) water vapor fluxes in the 950–1000-hPa layer. The

linear correlation, mean observed-minus-background (O 2 B) departure, root-mean-square departure (RMSD),

number of observations, and the 1:1 lines (in gray) are given. The striped nature of the observed winds in (c) results

from the winds being reported to the nearest 1m s21.
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with the latter perhaps suggesting a model underesti-

mation of the jet stream. In most layers, however, there

is little sign of a clear bias. The pressure-level back-

ground and observed water vapor fluxes averaged in 50-

hPa layers are plotted in Fig. 3d. In the model and ob-

servations, the 900–950- and 950–1000-hPa layers have

the peak water vapor fluxes, where observed values of

109 and 118gkg21ms21 are found, respectively. The low-

altitude nature of this flux in the PBL may not be ade-

quately captured by the commonly archived 925- and

1000-hPa levels suggesting that forecast studies of ARs

using a limited number of pressure levels may not

provide accurate flux estimates. With the moisture

content of the atmosphere decreasing with height,

water vapor fluxes also typically decrease with in-

creasing height, with a notable drop off in water vapor

fluxes above 850 hPa in the present study (Fig. 3d).

A comparison of the observed (gray bars) and model

(red bars) fluxes highlights that the model underesti-

mates water vapor fluxes below 850 hPa, with Fig. 3e

showing that the O 2 B in the 950–1000-hPa layer is

6.06 g kg21m s21 meaning that the forecast flux is 5.2%

below the observed flux. These results indicate that

the modeled transport of water vapor through the

atmospheric branch of the water cycle within ARs

(over the ocean) is insufficient in the IFS forecasts, which

has important ramifications for precipitation forecasting

and for the correct positioning of moisture for latent heat

release (e.g., Reynolds et al. 2019).

To ascertain whether there was dependence between

the low-altitude forecast departures (of specific humid-

ity, temperature, winds, and the water vapor flux) and

their location relative to the AR, we also assessed the

relationship between the root-mean-square departures

(RMSD) in the EDA control member and the IVT at

the 0000 UTC analysis at the closest model grid point.

We use the IVT because it acts as a proxy for AR lo-

cation, with larger values being mostly situated near the

core of the AR. While there is some positive association

between RMSD and IVT, there is not a particularly

strong correlation evident (not shown). This aspect of

the forecast evaluation will be tested further with more

FIG. 3. Shown areO2B departures (in the EDA control member) averaged in 50-hPa layers at the dropsonde locations for (a) specific

humidity, (b) temperature, and (c) wind speed. (d) Observed (gray) and background (red) pressure-level water vapor flux magnitude

averaged in 50-hPa layers when interpolating specific humidity on to thewind levels and (e) theO2B departures for water vapor flux. The

error bars show the 90% confidence interval of the mean. The number of values in each layer is given on the right-hand side of the panel,

and the number used across all layers is shown at the top right of each panel.
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dropsonde observations that will become available with

future campaigns.

b. Forecast evaluation with U.S. West Coast
radiosonde observations

We now consider theO2B departures (in the EDA

control member) at the four U.S. West Coast land-

based radiosonde sites in Figs. 5 and 6 . For the specific

humidity during winters (DJF) 2017/18 and 2018/19

(Figs. 5a,d,g,j), there are primarily negative O 2 B

values suggesting the model has an overall wet bias.

This model wet bias is somewhat different to the

dropsonde results where a model dry bias was found at

low altitudes. For specific humidity during summers

(JJA) 2018 and 2019 (Figs. 6a,d,g,j), the model bias in

the lower troposphere changes sharply with height,

with dry biases found below 950 hPa and wet biases

above 950 hPa at Salem and San Diego, and a dry

bias found between 950 and 800 hPa in Oakland and

Medford (with a wet bias in Oakland below 950 hPa).

These results illustrate how, over land, biases can vary

significantly based on the model’s ability to represent

the local climate, effects of topography, and land–sea

differences at the subgrid scale. For example, the

model grid cells over land do not accurately represent

subgrid-scale urban areas, which would neglect the

urban heat island effect thus potentially leading to

temperature biases and moisture content issues. Note,

also that theO2B departures are mostly larger in JJA

owing to the higher moisture content present in the

summer (cf. Figs. 5a,d,g,j and 6a,d,g,j).

In terms of temperature, positiveO2 B departures or

model cold biases are generally seen in the radiosonde

profiles and these departures are broadly similar between

DJF (Figs. 5b,e,h,k) and JJA (Figs. 6b,e,h,k) particularly

above the PBL. This corroborates the dropsonde results

discussed in section 3a and the cold biases presented in

Ingleby (2017). In particular, the largest temperature

biases throughout the troposphere are found at the

southernmost site assessed herein at San Diego, which

agrees with the results for the tropics in Ingleby (2017). It

is hypothesized that these biases are linked to low-level

humidity and cloud problems from several interrelated

issues, such as, challenges posed by low vertical resolution

satellite data to the data assimilation system and forecast

model errors. For thewind speed (Figs. 5c,f,i,l and 6c,f,i,l),

the high-altitude winds are generally underestimated by

the model, a similar finding to the dropsonde results

(Fig. 3c). In the lower troposphere (except Medford;

Figs. 5f and 6f) the O 2 B wind speed departures are

negative, and hence different from the dropsondes, mean-

ing that the model winds are mostly too large, which po-

tentially indicates an issue with model roughness and drag

at these locations. The different average wind profile at

Medford relates to its higher altitude (;400m) and sur-

rounding complex terrain. Comparing DJF (Figs. 5c,f,i,l)

FIG. 4. Scatterplots of the observations vs the background forecasts (in the EDA control member) for (a) PBL

height and (b) temperature at the PBL height. The linear correlation, mean O 2 B departure, root-mean-

square departure (RMSD), number of observations, and the 1:1 lines (in gray) are given. The number of

dropsondes (N 5 517) is smaller than the 585 dropsondes available because of the criterion in the Lavers et al.

(2019) method to have at least five dropsonde pressure levels at low altitudes ($700 hPa) to ensure that the low

levels were well sampled.
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FIG. 5. (a)–(l) O 2 B departures (in the EDA control member) averaged in 50-hPa layers during DJF 2017/18 and

2018/19 for (left) specific humidity, (center) temperature, and (right) wind speed at the four radiosonde sites. The

layers in (d) with less than 100 values are masked out. The bars in (f) that extend beyond the x axis have their mean values

given in the bar. Key as in Fig. 3.
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FIG. 6. (a)–(l)O2 B departures (in the EDA control member) averaged in 50-hPa layers during JJA 2018 and 2019 for

(left) specific humidity, (center) temperature, and (right) wind speed at the four radiosonde sites. The bars in (b), (f), (h),

(i), (j), and (k) that extend beyond the x axis have their mean values given in the bar. Key as in Fig. 3.
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with the results of JJA (Figs. 6c,f,i,l) shows that the

sign of the model wind speed bias at different heights

is broadly consistent in both seasons, although the

magnitude of the bias may change between summer

and winter.

c. Spread–error relationship of water vapor flux at the
dropsonde locations

A forecast evaluation of the square root of the mod-

ified spread–error relationship in (2) at the dropsonde

profiles is now undertaken for water vapor fluxes on the

925-, 850-, and 700-hPa levels and the results are pre-

sented in Fig. 7. In general, the standard deviation of the

departures
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DepVar

p
(solid lines) increases with lead

time with the 925-hPa surface having the largest de-

partures (Fig. 7a). Note that an evaluation of the mod-

ified spread–error relationship with a smaller sample

size showed that the shape of the error lines depended

somewhat on the sample used. Thus, the smallest de-

partures found at T 1 48 in Fig. 7 are hypothesized to

result from the relatively small sample considered and

do not indicate that T 1 48 is less subject to errors. The

ensemble standard deviation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EnsVar

p
(dashed lines)

also grows with lead time, but it is not enough to explain

the standard deviation of the departures
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DepVar

p
. The

observation uncertainty is also an important component,

since by considering it, the total
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EnsVar1ObsUnc2

p
draws closer to the departures (cf. dotted and solid lines

in Fig. 7). In this case, the observation uncertainty is

thought to largely account for representativeness errors

whereby the model resolving processes on a grid does

not adequately represent the point observation from the

dropsonde. However, this is still not enough to match

the standard deviation of the departures, which implies

that the forecasts for this quantity are underdispersive,

and this may reflect the need for improved stochastic

perturbations to better represent model uncertainty

(e.g., of large horizontal gradients in ARs) and ulti-

mately increase the dispersiveness of the ensemble.

An alternative approach to address the representa-

tiveness issue is through a downscaling of the model

fields to the point observation (which would further

increase EnsVar). However, this is outside the scope of

this study.

4. Conclusions

This investigation has used unique dropsonde obser-

vations collected during AR Recon 2018 and 2019 to

evaluate the forecasts of ARs in the ECMWF EDA and

ENS. First, the O 2 B departures calculated in the AR

Recon IOPs indicate that the EDA control member

had a cold bias throughout the troposphere, reaching a

maximum value of 0.6K in the 900–950-hPa layer. This

cold bias was also found at four U.S. West Coast ra-

diosonde sites across both winter and summer seasons

indicating that the bias is independent of AR occur-

rence. Furthermore the most noticeable cold bias was

found at the southernmost radiosonde site (San Diego),

consistent with the cold bias identified in the tropics in

previous studies. Second, the EDA control member at

the dropsonde profiles is 0.1–0.2 g kg21 drier below

850hPa and has weaker winds below 950hPa, which

results in an O 2 B of 6.06 g kg21m s21 for water vapor

flux in the 950–1000-hPa layer, or 5.2% of the aver-

age observed flux of 118 gkg21m s21. This implies that

the forecasted moisture flux within ARs is insufficient,

thus potentially affecting the downstream precipitation

forecasts and the location of moisture within the model.

Note that the largest errors herein are found at a lower

FIG. 7. The modified spread–error relationship in (2) of pressure-level water vapor flux magnitude. The square roots of DepVar (solid),

EnsVar (dashed), and EnsVar 1 ObsUnc2 (dotted) are shown at 0–120-h forecast lead times for (a) 925, (b) 850, and (c) 700 hPa.
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altitude than in Lavers et al. (2018). This results from the

use of pressure-level water vapor fluxes compared to the

vertical integral of the water vapor transport from three

levels in Lavers et al. (2018) which resulted in a higher

weight being given to 850hPa. Third, the evaluation of

the modified spread–error relationship revealed the IFS

to be underdispersive. This is partly due to representa-

tiveness error, whereby the model resolves processes on

themodel grid scale of 18 km, which is a larger scale than

the point observation given by the dropsonde. Even

when an attempt is made to account for the represen-

tativeness issue through an estimate of the observation

uncertainty, we found that the IFS still had too little

spread. There is also a possibility that not enough model

uncertainty is accounted for in the forecasts.

Further research on this topic could follow multiple

directions and here we highlight three possibilities. First,

as model improvements are generally implemented an-

nually at NWP centers the future deployment of drop-

sondes in observational campaigns could be used to

assess whether model upgrades are improving the fore-

casts of ARs and precipitation. Second, data denial ex-

periments (i.e., IFS model forecasts run without these

dropsonde observations) could be performed and eval-

uated to determine the impact of better representing the

water vapor flux on precipitation forecasts. Third, a

potential limitation of dropsondes is that they are usu-

ally available for specific storms during IOPs, which

results in a dropsonde sample that is biased toward

storms. Herein, we addressed this by using U.S. West

Coast radiosonde sites. This shows that the cold bias is

more widespread than just within storms and ARs.

However, the dry bias at low levels was not present at

these land stations which suggests that moisture biases

are more dependent on the storms or the surface char-

acteristics. This could be further investigated by using

the synoptic radiosonde network in other midlatitude

regions that are affected by ARs to ascertain if the

forecast departures and uncertainties uncovered herein

are found in other locations. This type of diagnostic

study would then lead to improved understanding of

model behavior and errors.
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